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Abstract. We study a Hamiltonian coupling a harmonic oscillator to massless scalar bosons
which may have arbitrary energy. For certain values of the parameters that this Hamiltonian
contains, we prove that the poles of its resolvant matrix elements are not in one-to-one
correspondence with the eigenstates of the isolated oscillator. This result raises the question
of the validity of this correspondence, even for small coupling, in atom–radiation interaction.

1. Introduction

In this study, we give information on the analytic structure of the resolvant of the operator

H(λ,µ, g) = a∗a ⊗ 1+ 1⊗ µHrad+ λ(a∗ ⊗ c(g)+ a ⊗ c∗(g)) (1)

whenλ ∈]0, 1] andµ is real and small. The Hamiltonian (1) acts in the tensor product of
Hosc, the space of states of a harmonic oscillator, withHrad, the space of states of a zero-
mass boson field.g is a function such thatλg(p) measures the strength of the coupling
of the oscillator to the photon with momentump. A particular assumption ong will be
necessary, since this function will have to be continued analytically and we do not want it
to change too much with this continuation. This assumption is given in the statement of
proposition 3.1 and discussed before the proof. The shape of the graph ofg, which must
not be confused with the shape of the emission profile, will thus be supposed to be smooth.

This problem may appear as a rather academic question, due to the unphysical values
of the parameters, and to the crude form of the Hamiltonian. However, since the model
incorporates the photon field in a simple way, results in the(µ = 1)-case should be easier
to obtain than with the atom–radiation Hamiltonian and they could give information about
the analytic structure of the resolvant in this latter problem. We think that our results might
help in treating that physicalµ = 1 case.

The atom–radiation problem has of course been explored for a long time and, recently,
important new results have been obtained [1–3]. In these papers, it is proved in a
nonperturbative way that to an eigenvalue of the atomic Hamiltonian may be associated
a complex value, a resonance, and that, in the neighbourhood of that eigenvalue, outside a
cuspidal domain pointed at the resonance, analyticity properties of resolvant matrix elements
are guaranteed. The study does not say anything about the analytic structure outside the
neighbourhood or inside the cuspidal domain.

Here, in our model, we shall prove something that may appear surprising: one excited
state of the oscillator gives rise to more than one pole of the resolvant matrix elements.
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Figure 1.

The mechanism behind this result may be stated in the following way. As is the case
in the atom–radiation problem, states of the system may contain any number of photons
and the energy spectrum of the photon is [0,∞]. These two facts have the consequence
that energy states of the uncoupled oscillator–radiation system are infinitely degenerated
since these states may consist of 1, 2, orn photons. The interaction may then be expected
to separate the energies of such different states having the same unperturbed energy. In
particular, if the energy of the radiation part is small, so that the energy of the state is close
to an unperturbed energy of the oscillator (or of the atom), this would explain the presence
of several poles corresponding to one unique oscillator level. We do not pretend that these
different poles would remain close together whenµ = 1. The result we obtain forµ small
is illustrated in figure 1; dotted curves are for theµ-dependence of the two poles.

This mechanism could operate in an atom–radiation interaction and has some analogy
with AC Stark effect, the fact that the position of levels in an atom depends on the number of
photons in the populated modes of the electromagnetic field. Theµ = 1 case in our model
would be a simple system on which such a mechanism could be tested, mathematically.

To our knowledge, there is little work on the precise question we are interested in. A
family of Hamiltonians to which (1) belongs has been thoroughly studied in [4]. Their
spectrum may be determined according to the values ofλ andµ. However, Arai does not
treat the problem of the analytic structure of the resolvant matrix elements.

Compared with the atom–radiation Hamiltonian,H(λ,µ, g) has an important property
in that it conservesntot, the sum of the excitation number of the harmonic oscillator and the
boson number. This should make the (µ = 1)-model simpler than nonrelativistic quantum
electrodynamics (QED), while maintaining two important aspects of the physical problem
which make it hard to grasp mathematically: the presence of an infinite number of particles
and the fact that their mass is 0. From the purely mathematical point of view, it could also
be interesting to study how the spectrum ofH(λ, 0, g) and that ofH(0, µ, g) combine in
the analytic structure of the resolvent ofH(λ,µ, g).

Some partial information concerning poles of some matrix elements of the resolvant of
(1) can be obtained from the fact that, reduced to the (ntot = 1)-states,H(λ,µ, g) is the
Friedrichs model. See, for instance, references on the subject in [5].

In a crude representation of atomic states, coupling of the atom with the quantum
electromagnetic field transforms the real energies of the atomic levels into complex
values, whose imaginary parts are the widths of the levels. In elementary textbooks, the
displacements of the energy levels are often calculated with rules valid only for perturbations
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of isolated nondegenerated eigenvalues. We are not considering this case, as the eigenvalues
lie inside the continuous spectrum, moreover at the edge of some parts of the continuum.
The result of [3] makes the existence of complex values attributed to resonances rigorous.

It is generally admitted, at least when the coupling is small, that an eigenvalue of the
unperturbed Hamiltonian does not give rise to an infinity of poles of the resolvent of the
full Hamiltonian. This is the image that we question here. We will see that new features
seem to appear when the number of bosons taken into account is greater than one. The
precise formulation will be stated in the conclusion.

A refined description of atomic states has to take the strength of the coupling into
account. It may modify the simple correspondence just mentioned between the real energies
of the uncoupled atom (or oscillator) and complex energies of the coupled system. For
instance, in [6], it can be seen in the Friedrichs model that when the coupling constantλ

increases, some peaks appear in the probability amplitude, that were not present for small
λ. In [4], it is shown that the spectrum ofH(λ,µ, g) changes in nature whenλ becomes
greater than a certain critical value. So perturbation of the simple image may come from
strong coupling effects although we believe that the perturbation which will appear in our
study is of a different kind.

Let us note that one of the hypotheses made in [4] excludes the possibility ofµ being
too small. The HamiltonianH is studied under that condition, which is alright for the
physical problem, if one looks only at the spectrum ofH . However, if information on the
analytic structure of its resolvant is sought, then the(µ ' 0)-behaviour may be relevant.
It could be pertinent for the (µ = 1)-problem, even ifλ is small. This is the motivation
behind this paper.

Another aspect has to be underlined. In the study of the resolvant in the complex plane,
analyticity properties ofg will have to be taken into account. This was already the case in
the Friedrichs model (see for example [7]).

Let us now present in a more mathematical way the reason why one might be reluctant
to accept the statement: ‘forµ = 1 andλ small, there is a one-to-one correspondence
between the set of eigenvalues ofa∗a and a set of complex numbers which would describe
the excited states of the oscillator coupled to the bosons’. We will state here mathematical
facts which sustain the motivation we expressed before in more physical terms.

We shall take the unusual point of view of considering (1) as a perturbation ofH(λ, 0, g)
by the unbounded operator 1⊗µHrad. If µ = 0, then the bosons have zero energy; therefore
each eigenvalue 0, 1, 2, . . . of a∗a⊗1 is infinitely degenerated as any number of bosons may
be present, but the degeneracy is removed when the coupling termλ(a∗ ⊗ c(g)+a⊗ c∗(g))
is introduced.H(λ, 0, g) is not lower bounded and its spectrum is given in the appendix; it
no longer looks like that ofa∗a. An excited state of the isolated oscillator, eigenvector of
a∗a in Hosc, gives rise, ifλ is small, to an infinite number of eigenvectors ofH(λ, 0, g) in
Hosc⊗Hrad. One could then ask whether such energy-level splitting still occurs ifµ 6= 0.
Our study is devoted to answering this question ifµ is small. The result is stated in the
proposition of section 5 and, it being understood that the eigenvalues are now changed into
poles of matrix elements of the resolvant, the answer is yes. It raises the question: is that
still true whenµ = 1?

As we can see, it is a multiboson effect, which is why we do not believe it is a strong
coupling effect, although it seems to be the case whenµ is small. However, in actual fact,
there is no obvious connection betweenµ small andλ fixed in [0, 1] andµ = 1 andλ large
in our problem.

Let us emphasize that this multiboson effect is already observed for the first excited
level of the oscillator, although our Hamiltonian couples this level to 1-boson states only.
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Indeed, taking the degeneracy of eigenvalue one into account entails considering more than
one boson in the final state, because the state that we will shortly denote by|1; 1〉 (the
oscillator is in the first excited state and one boson is present) can evolve into|0; 2〉 (the
oscillator in the fundamental and two bosons present).

Many studies (for instance [8, 9]) on mathematically tractable models for atom–radiation
interaction use 1-boson states only. This is made possible in two alternative ways. In the
first one, Friedrichs model, (see [9] or [6, complementCIII ]), the state-space of the system
is not a tensor product clearly separating the matter and the radiation. One of the states in
the Hilbert space of the system is viewed physically as the matter’s excited state without
any boson, but mathematically it is not the tensor product of a matter’s state with the
vacuum�rad in someHrad. It can evolve into a family of states indexed in a continuum,
and these states are viewed as describing the oscillator (or the atom) in the fundamental,
accompanied by one boson. However, these states are not a tensor product either. The
Hilbert space does not contain any 2-boson states. In the second way, for instance in [9],
the model does separate the matter and the radiation. In the state-space of the system,
certain states are actually a tensor product of the excited state of the matter with 1-boson
states, thus, seemingly, there should be 2-boson states, but the transition into a 2-boson state
is forbidden by the Hamiltonian which is chosen deliberately so as to avoid considering an
infinite number of bosons. In the problem we are treating here, 2-boson states play an
essential role. This was also the case in an earlier study [10].

Clearly our Hamiltonian is defined on a space which contains an arbitrary number of
bosons, and that feature usually makes the mathematical analysis difficult. The important
point that will allow us to bypass that difficulty is the following. The fact thatH(λ, 0, g)
has more than one eigenvalue in the neighbourhood of 1, forλ small, can be seen by
only considering restrictions ofH(λ, 0, g) to two subspaces where the number of bosons
is two at most. These subspaces are invariant byH(λ,µ, g). They are the eigenspaces
associated with eigenvalues 1 and 2 of the operatorNtot = a∗a ⊗ 1+ number(bosons);
they will be denoted byE1 andE2. So, turning now toH(λ,µ, g), as regards the poles
of its resolvant matrix elements, corresponding to the preceding eigenvalues, we will still
consider the restrictions of the operators to these subspaces, and, therefore, need not take
an unbounded number of bosons into account.

Our problem contains another difficulty, which is underlined in [1]. It comes from the
fact that the eigenvalues ofH(0, µ, g) are not only embedded in the continuous spectrum,
but are points of the boundary of parts of that continuum.

2. Notations and setting up

2.1. Notations

Let ϕ(1) be in  L2(R) andϕ(2) in  L2
sym(R2). We set|i〉 := (i!)−1/2(a∗)i�osc⊗�rad|i;ϕ(1)〉 :=

(i!)−1/2(a∗)i�osc⊗ ϕ(1) and |i;ϕ(2)〉 := (i!)−1/2(a∗)i�osc⊗ ϕ(2). � denotes the vacuum
state.

E1 is the subspace spanned by vectors of the form|1〉 or |0;ϕ(1)〉 with ϕ(1) ∈  L2(R). E2

is the subspace spanned by vectors of the form|2〉, |1;ϕ(1)〉 or |0;ϕ(2)〉, ϕ(1) ∈  L2(R), ϕ(2) ∈
 L2

sym(R2).
LetDn be the space ofn-variable, symmetric, square integrable functionsϕ(n) such that,

for i = 1, . . . n, p→ |pi |ϕ(n)(p1, . . . , pn) is in L2(Rn).
The domainD1 of H �E1 is the space spanned by vectors of the form|1〉 and |0;ϕ1〉

with ϕ(1) ∈ D1. The domainD2 of H �E2 is the space spanned by vectors of the form|2〉,
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|1;ϕ(1)〉 and |0;ϕ(2)〉, ϕ(1) ∈ D1, ϕ
(2) ∈ D2.

H(λ,µ, g) �Ei is self-adjoint onDi for i = 1, 2.
We set, for=z > 0,

Gi(λ, µ, z, g) := 〈i|[z −H(λ,µ, g)]−1|i〉 = 〈i|[z −H(λ,µ, g) �Ei ]−1|i〉. (2)

It is customary to introduce operatorsRi , called level-shift operators; they are defined, for
=z > 0, by

Ri(λ, µ, z, g) = λV (g) �Ei +λ2V (g)Qi [z −Qi(H0(µ)+ λV (g)) �Ei Qi ]
−1QiV (g) �Ei (3)

where

V (g) = a∗ ⊗ c(g)+ a ⊗ c∗(g) and H0(µ) = a∗a ⊗ 1+ 1⊗ µHrad

(thereforeH(λ,µ, g) = H0(µ)+ λV (g)) and

Qi = (1− |i〉〈i|) �Ei .
Setting

Ri,i(λ, µ, z, g) = 〈i|Ri(λ, µ, z, g)|i〉 (4)

we obtain (see [6])

Gi(λ, µ, z, g) = [z − i − Ri,i(λ, µ, z, g)]−1. (5)

We setd(λ) = 1
2(
√

1+ 4λ2− 1). One hasd(λ) < λ2 if λ 6= 0 andd(λ) ∼ λ2, for smallλ.
d measures the oscillator’s level splitting we mentioned in the introduction.

We also setfi(λ, µ, z, g) = z − i − Ri,i(λ, µ, z, g).

2.2. Setting up

Near z = 1, whenλ ∈ [0, 1] andµ is small, our aim is to derive thatG2(λ, µ, z, g) has
a pole distinct from that ofG1(λ, µ, z, g) from the fact thatH(λ, 0, g) has two distinct
eigenvalues in that region. Our tool will be Hurwitz’ theorem (see [12]). Let us state it in
the following form.

Let f (µ, z) be a function which, for allµ such that0 6 µ < µ0, is analytic in a disk
D(z0, R), with centrez0 and radiusR, not depending onµ. Let us suppose thatµ→ f (µ, z)

is continuous at0, uniformly forz ∈ D(z0, R), and thatz → f (0, z) does not vanish inD
except atz0, this zero being simple. Then there exists a functionη, defined in]0, R[ and
taking its values inR+, such that:∀ε such that0 < ε < R, ∀µ ∈ [0, η(ε)[, the function
z → f (µ, z) has a unique zero which is simple in the diskD(z0, ε). Let us denote it by
z(µ); moreover, the functionµ→ z(µ) is right-continuous atµ = 0.

Poles ofGi(λ, µ, z, g) are zeros offi(λ, µ, z, g); they are known forµ = 0 (see the
appendix). Thus the functionf (µ, z) in the theorem will be successivelyf1(λ, µ, z, g)

andf2(λ, µ, z, g). We will thus study the analyticity of these two functions (sections 3.1
and 4.1) and their continuity atµ = 0 (sections 3.2 and 4.2), in order to get the poles of
G2(λ, µ, z, g) (section 3.3) andG1(λ, µ, z, g) (section 4.3).

3. Analyticity properties of G2(λ,µ, z, g) near z = 1 and µ = 0

Throughout this section,H2(λ, µ, g) will denote the restriction of the operator (1) toE2.
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3.1. Analyticity ofR2,2(λ, µ, z, g) with respect toz

The entire section is devoted to proving the following.

Proposition 3.1.Let λ be fixed in ]0,1] andg real valued on ]−∞,+∞[ such that:
(1a) for someφ0 ∈]0, π/4], p → g(p) has analytic continuationsg+ in {p;p 6=

0,−φ0 6 argp 6 φ0} andg− in {p;p 6= 0, π − φ0 6 argp 6 π + φ0},
(1b) ∀f ∈ L2(R),

∫
g(e−θp)f (p) dp and

∫
[g(e−θp)]2 dp exist and are analytic with

respect toθ for |=θ | < φ0,
(1c) ∃Mg > 0 such that∀φ,−φ0 6 φ 6 φ0 : (

∫ +∞
−∞ p2|g(e−iφp)|2)1/2 < Mg

(2) ∀θ |=θ | 6 φ0, ηθ (g) := 2−1/2(
∫ +∞
−∞ |g(e−i=θp)|2 dp − 1)1/2 6 Cλ where C <

4× 10−5 sinφ0.
Then there exists a neighbourhoodVλ of z = 1 andµ1(λ) ∈]0, 1] such that for all

µ ∈ [0, µ1(λ)], z→ R2,2(λ, µ, z, g) can be analytically continued in allVλ.

Before entering into the proof, let us make some comments, firstly on hypothesis 2,
then on the method used.

Hypothesis 2 will be useful because analyticity properties of the resolvent matrix
elements will be obtained by analytic continuation ofg, the coupling function. We do
not want the couplingλg to change too drastically with that analytic continuation. Thus,
since it is of the orderλ, we will ask the variation to be at most of a smaller order, i.e.λ2;
this is what hypothesis 2 says. Thus the order of the coupling is not changed. Wheng is
analytically continued in the sector, itsL2 norm along the lines from the origin is supposed
to vary slowly with the angle that the line forms with the real axis, but since the bound on
the variation depends onλ, the class of admissibleg functions depends onλ. Sinceλ may
be chosen arbitrarily small,g may be forced to vary very slowly, in theL2-norm sense, in
the sectorial neighbourhood of the real axis, and we have to make sure that such classes
of g are not void. Here is an example of a function which has the desired property in a
sectorial neighbourhood of the positive axis:gn(z) = 2n/2(n!)−1/2e−z

1/n
. It can be shown

that, for largen, with theL2 norm on [0,∞], (‖gn(e−iφ.)‖2 − 1)1/2 equals O(φn−1/2) and
thus this quantity can be made smaller thanCλ. The upper bound given onC is a crude one
which could be improved. It has been calculated withλ arbitrary in [0, 1] and it depends
on the size ofVλ which is chosen.

Concerning the method of the proof, we are going to use a complex dilation eθ , as
is often the case in embedded eigenvalue perturbation problems. We have already said
that our problem is of such a kind, since we could treatλ(a∗ ⊗ c(g) + a ⊗ c∗(g)) as a
perturbation ofH(0, µ, g) = a∗a⊗1+1⊗µHrad, although we are not going to proceed in
that way. With that point of view, the unperturbed eigenvalue 1 is at the edge of one part of
the continuous spectrum, namely the part corresponding heuristically to eigenvectors of the
form |1, p〉, sincep may be arbitrarily small. However, because of that particular location
of the eigenvalue, rotating the spectrum ofHrad by changingp into eθp, and thusHrad into
e−θHrad, will not push the eigenvalue out of the continuous part of the spectrum of the
dilated unperturbed Hamiltonian. The dilation will be useful in another way. Considering
the functionsp→ g(e−θp) will reveal a simple means of taking advantage of the analyticity
properties ofg. In the simple case ofR1,1(λ, µ, z), which is presented in section 4, a well
known method of proving analyticity properties ofG1(λ, µ, z) is to perform a contour
deformation in an integral, and a way of doing it which can still be used forG2(λ, µ, z)

(whose expression is more complex) is to introduce the above functionsp→ g(e−θp).
Let us mention that this dilation, or analytic continuation, would not be necessary if

g had a compact support. Indeed, restricting the operators to subspaces ofE1 and E2
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consisting of compactly supported functions would makeHrad bounded, which very much
simplifies the demonstration. Theorem XII.11 of [5] may then be invoked. Calculations in
that case are given in [11]. In this work, we let the energies of the bosons take any value.

The line of proof is as follows. As can be seen from (4) and (3), we are concerned with
the existence andz-analyticity properties of the operator

L(λ,µ, z, g) := [z −Q2H2(λ, µ, g)Q2]−1 (6)

leading to analyticity properties of its matrix element

R2,2(λ, µ, z, g) = 2λ2〈1; g|[z −Q2H2(λ, µ, g)Q2]−1|1; g〉. (7)

We will use the analyticity ofg+ and g− in hypothesis 1 by introducing aθ -variable
varying in B := {θ; |=θ | 6 φ0} and considering that, onR+ and R−, g(p) is the
value for θ = 0 of e−θ/2g+(e−θp) and e−θ/2g−(e−θp), respectively. We will define
H2,θ (λ, µ, g), L(λ,µ, z, θ, g) and R2,2(λ, µ, z, θ, g), which coincide respectively with
H2(λ, µ, g), L(λ,µ, z, g) andR2,2(λ, µ, z, g) when θ = 0, and are analytic with respect
to θ , for θ ∈ B, and z in certain domains.L(λ,µ, z, θ, g) (and thusR2,2(λ, µ, z, θ, g),
will first be defined forθ ∈ B and z in a certain domain3 included in the=z > 0 half-
plane (section 3.1.2.1), then, after nailing downθ in B, will be extended to the region
=z > 23/2ληθ (g) (section 3.1.2.2), and, finally, to a neighbourhood ofz = 1 (section 3.1.3).
The important point is that, forz ∈ 3, R2,2(λ, µ, z, θ, g) is constant with respect toθ ; so it
is in factR2,2(λ, µ, z, g) which has been continued through the real axis nearz = 1, in our
procedure. This is the desired result. This continuation through the real axis will be made
possible by the fact that the antiself-adjoint part thatV (g) acquires wheng is analytically
continued can be controlled (see equation (28)). This is the purpose of hypothesis 2.

Let us now come to the proof in detail.

Proof. The dilation operates in the boson momentum space and its ratio is eθ ; θ is real
for the moment but will soon be made complex. The unitary transformation induced in
Hrad by this dilation is denoted byAθ and we setÃθ = 1⊗ Aθ . On the 1-boson space,
Aθ(f

(1))(p) = e−
θ
2f (1)(e−θp). For realθ , we set

H2,θ (λ, µ, g) := ÃθH(λ, µ, g)Ã−1
θ � E2 (8)

defined onD2 sinceD2 is invariant byAθ . As AθHradA
−1
θ = e−θHrad, one has

H2,θ (λ, µ, g) = (a∗a ⊗ 1+ µe−θ1⊗Hrad+ λV (gθ )) � E2 (9)

wheregθ = Aθg and relationsAθc(g)A
−1
θ = c(gθ ) andAθc∗(g)A−1

θ = c∗(gθ ) have been
used. The unitarity ofÃθ yields, for=z > 0,

R2,2(λ, µ, z, g) = R2,2(λ, µ, z, θ, g) (10)

where

R2,2(λ, µ, z, θ, g) := 2λ2〈1; gθ |[z −Q2H2,θ (λ, µ, g)Q2]−1|1; gθ 〉 (10a)

a function which therefore does not depend onθ , if θ is in R.
We set

L(λ,µ, z, θ, g) := [z −Q2H2,θ (λ, µ, g)Q2]−1. (11)

We are now going to makeθ complex.
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3.1.1. Analytic continuation ofH2,θ for θ ∈ B. Since we keep the Hilbert space unchanged,
i.e. still E2, Aθ does not make sense anymore ifθ is complex; yetH2,θ , defined by (9)
for θ real, may be analytically continued with respect to theθ -variable throughout the
strip −φ0 6 =θ 6 φ0. With gθ (p) = e−

θ
2g(e−θp), defined thanks to hypothesis 1 of

proposition 3.1, this continuation is given by the following formula:

H2,θ (λ, µ, g) = (a∗a ⊗ 1+ µe−θ1⊗Hrad+ λ(a∗c(gθ )+ ac∗(gθ ))) � E2. (12)

As H2,θ (λ, µ, g) is unbounded, analyticity here is to be taken in the sense of Kato [13,
section VII.2]. H2,θ (λ, µ, g) is defined onD2 if µ 6= 0 and onE2 if µ = 0. Neither
H2,θ (λ, µ, g) nor evenH2,θ (λ, 0, g) are self-adjoint whenθ is complex. Let us denote by
V2 the restriction ofV to E2, and set

V2,θ (g) = (a∗c(gθ )+ ac∗(gθ )) � E2 (13a)

g
(r)
θ = 2−1(gθ + gθ ) g

(i)
θ = (2i)−1(gθ − gθ ) (13b)

V
(r)

2,θ (g) = V2(g
(r)
θ ) V

(i)

2,θ (g) = V2(g
(i)
θ ). (13c)

V
(r)

2,θ (g) andV (i)2,θ (g) are self-adjoint andV2,θ (g) = V (r)2,θ (g)+ iV (i)2,θ (g); so

H2,θ (λ, µ, g) = (a∗a ⊗ 1+ µe−θ1⊗Hrad) � E2+ λ(V (r)2,θ (g)+ iV (i)2,θ (g)). (14)

V2,θ (g) is bounded (‖V2,θ (g)‖ 6 23/2‖gθ‖) andV2,θ (g) is bounded-holomorphic inθ for
θ ∈ B. Therefore,H2,θ (λ, µ, g) is holomorphic forθ ∈ B (see [13, VII.2, problem 1.2]).
Thanks to hypothesis 2, the antiself-adjoint part ofV2,θ (g) can be controlled:‖V (i)2,θ (g)‖ 6
23/2ηθ (g) < 23/2Cλ, because‖g(i)θ ‖ = ηθ (g). (The equality(gθ , gθ ) = 1 has been used;
this results from the analyticity of(gθ , gθ ), which has been assumed, and the fact that it
has the value 1 for realθ . Also note that‖gθ‖2 > 1).

3.1.2. Expression ofR2,2(λ, µ, z, g), for =z > 23/2ληθ (g), using theθ variable.

3.1.2.1. Expression ofR2,2(λ, µ, z, g) in 3 ⊂ {z; =z > 23/2ληθ (g)}. Let us first remark
that the important result in this section is not thatR2,2(λ, µ, z, g) is proved to be analytic
for =z > 23/2ληθ (g), since it is known from the beginning to be analytic in=z > 0. The
point is thatR2,2(λ, µ, z, g) will be written as an expression (see (15), with (10a) and (14))
which can be continued across the real axis, whereas that possibility was not obvious on
the original one (4) (with (3)), and that the equality (15) is proved for=z > 23/2ληθ (g).

Let us determine a region3 in the z-plane such that,∀z ∈ 3 and ∀θ ∈ B,
formula (11), withH2,θ now given by (14), defines an operator that we still denote by
L(λ,µ, z, θ, g). If =(zeθ ) > 0, A := z − µe−θ (1⊗ Hrad)Q2 has a bounded inverse and
besides,B := Q2H2,θ (λ, 0, g)Q2 is bounded; it then suffices that‖A−1B‖ should be smaller
than 1 for the sumA + B to be invertible. Since‖A−1‖ 6 |eθ ||=(zeθ )|−1, the relation
‖A−1B‖ < 1 will be fulfilled as soon as|eθ ||=(zeθ )|−1‖H2,θ (λ, 0, g)‖ < 1. Now, as a
consequence of the hypotheses ong, there existsa, independent ofλ, such that∀θ such
that |=θ | 6 φ0, ‖H2,θ (λ, 0, g)‖ < a, if λ < 1. Let us set

3 =
{
z; 0< <z < 2; =z > a + 2 sinφ0

cosφ0

}
.

It can be verified that∀z ∈ 3, ∀θ ∈ B, =(zeθ ) > 0 anda|eθ‖=(zeθ )|−1 < 1. Thus, for
z ∈ 3, (11) defines aθ -analytic family of bounded operators,L(λ,µ, z, θ, g), when θ
varies inB.
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As a consequence, the functionR2,2(λ, µ, z, ., g), originally defined by (10a) for =z > 0
andθ real, can be analytically continued throughoutB, for everyz fixed in3.

Still for z ∈ 3, R2,2(λ, µ, z, θ, g) is actually constant forθ real inB; so it is constant
in all B and

R2,2(λ, µ, z, g) = R2,2(λ, µ, z, θ, g) ∀z ∈ 3 ∀θ ∈ B. (15)

From now on,θ0 being any fixed point inB satisfying=θ0 = φ0, we will put θ = θ0.
Let us show thatL(λ,µ, z, θ0, g) exists∀z,=z > 23/2ληθ0(g).

3.1.2.2. Expression ofR2,2(λ, µ, z, g) in the whole half-plane=z > 23/2ληθ0(g). Thanks
to the positivity ofHrad, the bound for‖V (i)2,θ0

‖ given in section 3.1.1 yields

{〈u|Q2H2,θ0(λ, µ, g)Q2|u〉; u ∈ D(H2,θ0), ‖u‖ = 1} ⊂ {z; =z < 23/2ληθ0(g)}.
Then theorem V.3.2 of [13] tells us that if=z > 23/2ληθ0(g),[z − Q2H2,θ0(λ, µ, g)Q2]
is invertible since it is invertible forz ∈ 3. Its inverse is analytic with respect toz
for =z > 23/2ληθ0(g) and it defines an analytic continuation ofz → L(λ,µ, z, θ0, g).
Thus, by (15) and (10a), it provides an analytic continuation ofz → R2,2(λ, µ, z, g) for
=z > 23/2ληθ0(g).

We are now going to continue the r.h.s. of (15) across the realz-axis.

3.1.3. Continuation ofR2,2(λ, µ, . . . , g) into a neighbourhood of 1. First, let us sketch
how this can be done, after setting, forz = x + iy:

Uθ0(λ, z, g) := eθ0(z −Q2(a
∗a + λV (r)2,θ0

(g))Q2) (16)

Wθ0(λ, µ, y, g) := eθ0(µe−θ0Q2(1⊗Hrad)+ iλQ2V
(i)

2,θ0
(g)Q2− iy) (17)

so that

z −Q2H2,θ0(λ, µ, g)Q2 = −e−θ0(Uθ0(λ, x, g)−Wθ0(λ, µ, y, g)). (18)

(If µ 6= 0, Wθ0 is unbounded, and its domain isD2; it is E2 if µ = 0.)
We want an inverseL′(λ, µ, z, θ0, g) for z −Q2H2,θ0(λ, µ, g)Q2, the l.h.s. of (18). If

Uθ0(λ, x, g) is invertible, its inverse being denoted byTθ0(λ, z, g), then, formally,

L′(λ, µ, z, θ0, g) = eθ0[eθ0 − Tθ0(λ, x, g)Wθ0(λ, µ, y, g)]
−1Tθ0(λ, x, g) (19)

and to prove the existence ofL′θ0
(λ, µ, z, g), it is sufficient to show that the imaginary part of

Tθ0(λ, x, g)Wθ0(λ, µ, y, g) is smaller than that of eθ0. The crucial point will be formula (29)
which shows that the imaginary part is a bounded operator (whereas the real part is not).
That the bound is small enough appears in formula (28) as a consequence of hypothesis 2.
Then, once we have definedL′(λ, µ, z, θ0, g) for z in V1,λ, a neighbourhood of 1, we will
check (section 3.1.3.3) that it is an analytic continuation inz of L(λ,µ, z, θ0, g), previously
defined in=z > 23/2ληθ0(g). Thus we will get an analytic continuation ofR2,2(λ, µ, ., g),
near 1, across the real axis.

The following section is devoted to proving thatUθ0(λ, x, g) is invertible in a
neighbourhood ofx = 1, and to obtaining a bound for the norm of its inverse
(formula (23b)).
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3.1.3.1. Definition and study ofTθ0(λ, z, g). Let us setq(λ, z, g(r)θ0
) = z(z−1)−2λ2‖g(r)θ0

‖2

and q1(λ, z, g
(r)
θ0
) = z(z − 1) − λ2‖g(r)θ0

‖2. It can be verified that the following formulae
define the inverse ofUθ0(λ, x, g) wherever the functionsq−1, q−1

1 andz−1 are defined:

Tθ0(λ, z, g)|2〉 = z−1|2〉 (20a)

Tθ0(λ, z, g)|1;ϕ〉 = q−1
1 (λ, z, g

(r)
θ0
)(z|1;ϕ〉 +

√
2λ|0; g(r)θ0

∨ ϕ〉
+λ2(g

(r)
θ0
, ϕ)q−1(λ, z, g

(r)
θ0
)[z|1; g(r)θ0

〉 +
√

2λ|0; g(r)θ0
∨ g(r)θ0

〉]) (20b)

Tθ0(λ, z, g)|0;ϕ ∨ ψ〉 = z−1|0;ϕ ∨ ψ〉 + λ√
2
z−1q−1

1 (λ, z, g
(r)
θ0
)

×(z|1; (g(r)θ0
, ϕ)ψ + (g(r)θ0

, ψ)ϕ〉 +
√

2λ|0; g(r)θ0
∨ ((g(r)θ0

, ϕ)ψ + (g(r)θ0
, ψ)ϕ)〉

+2λ2(g
(r)
θ0
, ϕ)(g

(r)
θ0
, ψ)q−1(λ, z, g

(r)
θ0
)(z|1, g(r)θ0

〉 +
√

2λ|0; g(r)θ0
∨ g(r)θ0

〉)).
(20c)

In these formulae, our convention isf ∨ g = 2−1(f ⊗ g + g ⊗ f ).
We set x±(λ, g

(r)
θ0
) := 1

2(1 ±
√

1+ 8λ2‖g(r)θ0
‖2) and x1,±(λ, g

(r)
θ0
) := 1

2(1 ±√
1+ 4λ2‖g(r)θ0

‖2); they are the zeros ofq(λ, x, g(r)θ0
) andq1(λ, x, g

(r)
θ0
) respectively. Thus

Tθ0(λ, z, g) is defined forz 6= 0, x±, x1,±. Let V1,λ be the disk with centre 1 and radius
λ2/2. V1,λ does not contain these points since‖g(r)θ0

‖ = (1+ ηθ0(g)
2)1/2 > 1. Uθ0(λ, x, g)

is thus defined inV1,λ.
An alternative expression forTθ0(λ, z, g) will be useful: inL(E2), for =z > 0, let us

setG0(z) = (z −Q2(a
∗a ⊗ 1))−1 and

V +2 := G0(z)Q2(a ⊗ c(g(r)θ0
)∗)Q2G0(z)Q2(a

∗ ⊗ c(g(r)θ0
))Q2

V −2 := G0(z)Q2(a
∗ ⊗ c(g(r)θ0

))Q2G0(z)Q2(a ⊗ c(g(r)θ0
)∗)Q2.

Then, for=z > 0, one may writeTθ0(λ, z, g) in the form

Tθ0(λ, z, g) = −G0(z)+ [1− λ2V +2 ]−1(1+ λG0(z)Q2(a ⊗ c(g(r)θ0
)∗)Q2)G0(z)

+[1− λ2V −2 ]−1(1+ λG0(z)Q2(a
∗ ⊗ c(g(r)θ0

))Q2)G0(z). (21)

This formula may then be used to turnTθ0(λ, z, g) into the following operatorial form
which, as formulae (20), does not have a pole atz = 1, unlikeG0(z):

Tθ0(λ, z, g) = q−1
1 λ(Q2(a

∗ ⊗ c(g(r)θ0
))+ (a ⊗ c(g(r)θ0

)∗)Q2)

+(zq1)
−1λ2Q2(1− a∗a)⊗ c(g(r)θ0

)∗c(g(r)θ0
)+ q−1

1 zQ2(a
∗a ⊗ 1)

+z−1(1− a∗a)2⊗ 1+ (qq1)
−1λ2(z|1; g(r)θ0

〉〈1; g(r)θ0
|

+
√

2λ|1; g(r)θ0
〉〈0; g(r)θ0

∨ g(r)θ0
| +
√

2λ|0g(r)θ0
∨ g(r)θ0

〉〈1; g(r)θ0
|

+2z−1λ2|0; g(r)θ0
∨ g(r)θ0

〉〈0; g(r)θ0
∨ g(r)θ0

|). (22)

(22) may also be verified directly from (20); we recall that the operators are restricted to
E2.

In order to show thatTθ0(λ, z, g) ∈ B(E2), let us use (22). From‖g(r)θ0
‖ > 1, it follows

that for 0< λ < 1 and |z − 1| < λ2/2, one has|z−1| < 2, |q1(λ, z, g
(r)
θ0
)| >

√
5−2
4 λ2 and

|q(λ, z, g(r)θ0
)| > λ2/4. As a consequence, there existsC1 such that

‖Tθ0(λ, z, g)‖ 6 C1λ
−2‖g(r)θ0

‖4 = C1λ
−2(1+ ηθ0(g)

2)2. (23a)
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One can verify that this equality is true withC1 = 300. Since, by hypothesis,ηθ0(g) < C,
we obtain

‖Tθ0(λ, z, g)‖ 6 C1(1+ C2)2λ−2 ∀z ∈ V1,λ. (23b)

ThusTθ0 is bounded-analytic forz in V1,λ.

3.1.3.2. Existence of[eθ0 − Tθ0(λ, x, g)Wθ0(λ, µ, y, g)]
−1. We decomposeWθ0 into its

self-adjoint and antiself-adjoint parts:

Wθ0 = W(r)
θ0
+ iW(i)

θ0

W
(r)
θ0
= µQ2(1⊗Hrad)− λ=(eθ0)Q2V

(i)

2,θ0
Q2+ y=(eθ0)

W
(i)
θ0
= λ<(eθ0)Q2V

(i)

2,θ0
Q2− y<(eθ0).

As Tθ0(λ, x, g), defined for|x−1| < λ2/2, is self-adjoint onE2, then, in the decomposition

Tθ0(λ, x, g)Wθ0(λ, µ, y, g) = Aθ0(λ, µ, x, y, g)+ iCθ0(λ, µ, x, y, g) (24a)

whereAθ0(λ, µ, x, y, g) andCθ0(λ, µ, x, y, g) are self-adjoint, the antiself-adjoint part of
Tθ0(λ, x, g)Wθ0(λ, µ, y, g) is

Cθ0(λ, µ, x.y, g) = (2i)−1[Tθ0(λ, x, g),W
(r)
θ0
(λ, µ, y, g)]

+2−1[Tθ0(λ, x, g),W
(i)
θ0
(λ, y, g)]+ (24b)

where [, ]+ is the anti-commutator.
Let us show that there existsbg(λ, µ, y, θ0) > 0 such that

∀x|x − 1| < λ2/2 ‖Cθ0(λ, µ, x, y, g)‖ < bg(λ, µ, y, θ0). (25)

By theorem IV.3.17 and formula V.(3.16) of [13], this will imply that the spectrum
σ(Tθ0(λ, x, g)Wθ0(λ, µ, y, g)) of Tθ0(λ, x, g)Wθ0(λ, µ, y, g)) is contained in the strip of
width bg centred along the real axis, for such values ofz.

Let us use (20). ‖g(r)θ0
‖−1a∗c(g(r)θ0

), ‖g(r)θ0
‖−1ac(g

(r)
θ0
)∗, ‖g(r)θ0

‖−2c(g
(r)
θ0
)∗c(g(r)θ0

),

‖g(r)θ0
‖−2|1; g(r)θ0

〉〈1; g(r)θ0
|, ‖g(r)θ0

‖−3|1; g(r)θ0
〉〈0; g(r)θ0

∨ g
(r)
θ0
|, and finally ‖g(r)θ0

‖−4|0; g(r)θ0
∨

g
(r)
θ0
〉〈0; g(r)θ0

∨ g(r)θ0
|, as operators acting fromD2 into D2, have a commutator with

1 ⊗ Hrad which can be extended to allE2; these extensions are bounded in norm by
C ′2‖g(r)θ0

‖−1‖Hradg
(r)
θ0
‖, whereC ′2 is a number. It follows that there existsC2 ∈ R+ such

that [Tθ0(λ, x, g),1⊗ Hrad] is bounded byC2λ
−2‖g(r)θ0

‖3 · ‖Hradg
(r)
θ0
‖, uniformly for z such

that |x − 1| < λ2/2. Now, sinceTθ0(λ, x, g) is uniformly bounded for these values
of x and V (i)2,θ0

is bounded, then [Tθ0(λ, x, g),W
(r)
θ0
(λ, µ, y, g)] is bounded, as well as

[Tθ0(λ, x, g),W
(i)
θ0
(λ, µ, y, g)]+; this proves thatCθ0(λ, x, y, g) is bounded. To be more

accurate, if|x − 1| < λ2/2,

‖[Tθ0(λ, x, g,W
(r)
θ0
(λ, µ, y, g)]‖ < µλ−2C2‖g(r)θ0

‖3 · ‖Hradg
(r)
θ0
‖

+2
5
2λ=(eθ0)ηθ0(g)‖Tθ0(λ, x, g‖ (26a)

‖[Tθ0(λ, x, g,W
(i)
θ0
(λ, µ, y, g)]+‖ < 2(23/2ληθ0(g)+ |y|)|<(eθ0)|‖Tθ0(λ, x, g‖. (26b)

This yields (25) with

bg(λ, µ, y, θ0) = 2−1C2λ
−2µ‖g(r)θ0

‖3‖Hradg
(r)
θ0
‖ + e<θ0(25/2ληθ0(g)+ |y|)‖Tθ0‖. (27)
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Now (25) and (27), together with the control on the antiself-adjoint part ofV (g),
will enable us to get an upper bound forbg(λ, µ, y, θ0), and thus to determineVλ, a
neighbourhood ofz = 1, andµ1(λ) > 0 such that

∀z ∈ Vλ ∀µ ∈ [0, µ1(λ)] eθ0 /∈ σ(Tθ0(λ, x, g)Wθ0(λ, µ, y, g)).

Indeed, the condition onC in hypothesis 2 of proposition 3.1 implies that, withC1 = 300,
25/2C(1+ C2)2C1 <

1
6 sinφ0 (remember=θ0 = φ0). Then (23b), which is satisfied with

that value ofC1, implies that∀x such that|x − 1| < λ2/2,

25/2λe<θ0ηθ0(g)‖Tθ0(λ, x, g)‖ < 1
6=(eθ0). (28)

Then from (27) and‖g(r)θ ‖2 < 1+ C2, it can be concluded that, if

Vλ := {z; |<z − 1| < λ2/2; |=z| < 1
6 sinφ0[C1(1+ C2)2]−1λ2}

and

µ1(λ) := (3C2)
−1(1+ C2)−

3
2λ2 · ‖Hradg

(r)
θ0
‖−1=(eθ0)

then

∀z ∈ Vλ ∀µ ∈ [0, µ1(λ)] ‖Cθ0(λ, µ, x, y, g)‖ < bg(λ, µ, y, θ0) <
1
2=(eθ0)

(29)

and thus eθ0 − Tθ0(λ, x, g)Wθ0(λ, µ, y, g) is invertible. As we said, this inverse is denoted
by L′θ0

(λ, µ, z, g) and it remains to compare it withLθ0(λ, µ, z, g).

3.1.3.3.L′θ0
(λ, µ, z, g) is an analytic continuation ofLθ0(λ, µ, z, g). It can be seen with

formulae (11), (14), and (16)–(18) thatL′(λ, µ, z, θ0, g) defined by (19) andL(λ,µ, z, θ0, g)

defined by (11) coincide at pointsz where they are both defined. Fromηθ0(g) < Cλ and
section 3.1.2,L(λ,µ, z, θ0, g) exists for=z > 23/2Cλ2. As this domain has a non-empty
intersection withVλ, L′(λ, µ, ., θ0, g), which is analytic inVλ, is an analytic continuation
of L(λ,µ, ., θ0, g). Thus proposition 3.1 is proved. �

Of course, the analyticity off2(λ, µ, . . . , g) results from that ofR2,2(λ, µ, . . . , g). We
will deduce the zeros ofz→ f2(λ, µ, z, g) near 1 and for smallµ from the knowledge of
the zeros ofz → f2(λ, 0, z, g) near 1, if we show the continuity property with respect to
µ, uniformly with respect toz.

3.2. Continuity ofR2,2(λ, µ, z, g) at µ = 0

Proposition 3.2.Using the same hypotheses as in proposition 3.1,R2,2(λ, ., z, g) is right-
continuous at 0, uniformly forz in Vλ.

Proof. One has

〈2|R(λ,µ, z, g)− R(λ,0, z, g)|2〉 = (2λ2µ)〈1, g(r)θ0
|L(λ,µ, z, θ0, g)

×(1⊗Hrad)Q2L(λ, 0, z, θ0, g)|1, g(r)θ0
〉

= (2λ2µ)〈1, g(r)θ0
|L(λ,µ, z, θ0, g)Q2L(λ, 0, z, θ0, g)(1⊗Hrad)|1, g(r)θ0

〉
+(2λ2µ)〈1, g(r)θ0

|L(λ,µ, z, θ0, g)[(1⊗Hrad),Q2L(λ, 0, z, θ0, g)]|1, g(r)θ0
〉.
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By using the relations: [(1⊗Hrad), (1−X)−1] = (1−X)−1[(1⊗Hrad), X](1−X)−1 and
[(1⊗Hrad), V2,θ0(g)] < C0‖Hradgθ0‖ for someC0, one obtains, for someC ′3 ∈ R+

‖[1⊗Hrad,Q2L(λ, 0, z, θ0, g)]‖ < C ′3λ‖[Hradgθ0‖‖L(λ, 0, z, θ0, g)‖2.

From theorem V.3.2 of [13],

‖L(λ,µ, z, θ0, g)‖ < |eθ0|
dist(eθ0, σ (Tθ0Wθ0))

‖Tθ0(λ, x, g)‖

consequently‖L(λ,µ, z, θ0, g)‖ < 2C1(1+ C2)2λ−2(sinφ0)
−1. It then follows that there

exists a numberC3 such that∀z ∈ Vλ, ∀µ ∈ [0, µ1(λ)]

|〈2|R(λ,µ, z)− R(λ,0, z)|2〉| < C3µλ
−3‖Hradgθ0‖

which proves the uniform continuity. �

3.3. The pole ofG2(λ, µ, . . . , g) near 1 in the second sheet

This pole is the zero off2(λ, µ, . . . , g). As we said, we are now in a position to apply
Hurwitz’ theorem.

Proposition 3.3.Let λ ∈]0, 1] andg satisfy the hypotheses in proposition 3.1. There then
exists a neighbourhoodVλ of 1 with the following property. For every diskV ′λ with
centre 1 contained inVλ, there existsµ2(λ,V ′λ) > 0 such that, forµ ∈ [0, µ2(λ,V ′λ)] ,
z→ f2(λ, µ, z, g) has exactly one zero inV ′λ.

Proof. A simple finite-dimension calculus yields

R2,2(λ, 0, z, g) = 2λ2z[z(z − 1)− 2λ2]−1 for =z > 0

and

f2(λ, 0, z, g) = q(z)−1(z − 1)(z(z − 2)− 4λ2).

In the diskV1,λ (centre 1, radiusλ2/2), 1 is the unique zero off2(λ, 0, z, g). Therefore,
thanks to the analyticity off2(λ, µ, ., g) in Vλ and to the right-continuity off2(λ, ., z, g)

at µ = 0, uniform inVλ, proposition 3.3 is a consequence of Hurwitz’ theorem. �

As zeros off2(λ, µ, z, g) are poles of

G2(λ, µ, z, g) = 〈2|[z −H(λ,µ, g)]−1|2〉
we have just shown that the above matrix element of the resolvant ofH(λ,µ, g) exhibits
exactly one pole in every sufficiently small neighbourhood ofz = 1, providedµ is small
enough andg satisfies the hypotheses of proposition 3.1. In the following section, we are
going to show thatG1(λ, µ, z, g) also exhibits a pole, still in the second sheet, distinct from
the preceding one, and still close to 1 ifλ is small (andg adequately chosen).

4. Analyticity properties of G1(λ,µ, z, g) near z = 1+ d(λ) and µ = 0

It can be seen thatG1(λ, 0, z, g) = z[z(z − 1) − λ2]−1. In the disk with centre 1+ d(λ)
and radius1

2 + d(λ), G1(λ, 0, z, g) has only one pole atz = 1+ d(λ).
As in section 3, let us now turn to thez-analyticity andµ-continuity properties of

R1,1(λ, µ, z, g) nearz = 1+ d(λ) andµ = 0, in order to apply Hurwitz’ theorem.
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4.1. Analyticity ofR1,1(λ, µ, z, g) nearz = 1+ d(λ)
For =z > 0,

R1,1(λ, µ, z, g) = λ2
∫ ∞
−∞

g2(p)(z − µ|p|)−1 dp. (30)

Let us suppose again thatg is in L2(R) and admits analytic continuations as in
proposition 3.1. LetWλ be the disk with centre 1+ d(λ) and radiusr = ( 1

2 + d(λ)) sinφ1,
with 0< φ1 < φ0; it is contained in the analyticity domain ofg. As 0 /∈Wλ, R1,1(λ, 0, z, g)
is analytic inz ∈ Wλ. For µ > 0 andz ∈ Wλ, the integrand in (30) is meromorphic with
respect top for |p| in µ−1Wλ, with poles only atp = ±µ−1z. So, by means of a contour
deformation in thep-complex plane,R1,1(λ, µ, ., g) can be analytically continued from the
regionWλ ∩ {z; =z > 0} across the real axis throughoutWλ.

4.2. Continuity ofR1,1(λ, µ, z, g) at µ = 0, nearz = 1

Let us suppose that∀φ, |φ| 6 |φ0|, p→ |p|1/2g( 1
2 +e−iφp) andp→ |p|1/2g(− 1

2 −e−iφp)

are inL2(R+). Uniform continuity is obtained by transforming

R1,1(λ, µ, z, g)− R1,1(λ, 0, z, g) = µλ
2

z

∫ ∞
−∞
|p|g2(p)(z − µ|p|)−1 dp

into the integral on the pathC shown in figure 2 below, whereφ0 > φ2 > φ1; we will
suppose that the integration at infinity does not give any contribution, for instance by
requiring limR→∞(R sup|φ|6|φ0| |g(±Reiφ)|) = 0. If p ∈ C, z ∈ Wλ andµ ∈ [0, 1], then
|(z −µ|p|)−1| < ε−1, for anε > 0. This implies the continuity ofR1,1(λ, ., z, g) atµ = 0,
uniformly for z in Wλ.

Now Hurwitz’ theorem may be applied.

4.3. The pole in the neighbourhood of 1, in the second sheet, ofG1(λ, µ, z, g)

Proposition 4.3.Let g be as in proposition 3.1 and satisfy:
(1) ∀φ, |φ| 6 |φ0|, p → |p|1/2g( 1

2 + e−iφp) and p → |p|1/2g(− 1
2 − e−iφp) are in

L2(R+)
(2) limR→∞(R sup|φ|6|φ0| |g(±Reiφ)|) = 0.
There then exists a neighbourhoodWλ of 1+ d(λ) with the following property.
For every diskW ′λ centred at 1+ d(λ) and contained inWλ, there existsµ3(λ,W ′λ)

such thatG1(λ, µ, ., g) has a unique pole inW ′λ if µ ∈ [0, µ3(λ,W ′λ)].

Proof. Proposition 4.3 follows from the analyticity and continuity properties just proved,
due to the fact thatf1(λ, 0, z, g) has a unique zero inWλ. �

φ 2

2φ

-1/2 1/2

C

C

C

Figure 2.
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5. Main proposition

Let λ be in ]0, 1] andg satisfy the hypotheses of propositions 3.1 and 4.3. There then exists
µ0(λ) such that forµ ∈ [0, µ0(λ)], the matrix elements of the resolvant ofH(λ,µ, g) have
at least two distinct poles in the diskD(1, 2λ2) with centre 1 and radius 2λ2.

Proof. In sections 3 and 4, neighbourhoodsV ′λ of 1 andW ′λ of 1 + d(λ) have been
considered; let us choose them to be disjoint and contained inD(1, 2λ2). Then, for
µ0(λ) = min{µ2(λ,V ′λ), µ3(λ,W ′λ)}, the two poles obtained in sections 3 and 4 respectively
are distinct. �

For λ small, they are close to 1, sinced(λ) ∼ λ2.
The result is illustrated in figure 1. Other poles have also been drawn, with theirµ-

dependence: they are those that would likely be obtained by also consideringE3, E4, . . . ,

eigenspaces associated with eigenvalues 3, 4, . . . of the operatorNtot.

6. Conclusion

In the simplest Hamiltonian coupling an harmonic oscillator to massless scalar bosons,
we introduced an extra parameterµ, such that the ‘physical’ Hamiltonian is recovered
for µ = 1. The coupling constantλ is taken in ]0, 1]. For µ small enough, we found
two distinct poles near 1 in matrix elements of the resolvant, and they may reasonably be
associated with only one level of the harmonic oscillator, the first excited one. In essence,
the result may be stated in the following way. Let us considerµ1⊗ Hrad+ λV (g) as a
perturbation ofH(0, 0, g) = a∗a ⊗ 1. The eigenvalues of the unperturbed Hamiltonian
H(0, 0, g) are infinitely degenerated and the perturbation splits this degeneracy. We have
already indicated that this point of view leads one to expect an infinity of poles for each
level. If the values of the parameters in the Hamiltonian were physical, and ifλ is small, it
seems to us that this would be in discrepancy with the usual physical description of excited
states, which affects a complex number to each level (energy and width). However, it is not
strictly in contradiction with the fact proved in [2, 3] that there exists a particular complex
number attached to each atomic level. The results of [2, 3] do not exclude poles different
from the one the authors call the resonance. Moreover, the existence of such a number is
not strictly equivalent to the fact that an excited state could be represented by a complex
number. For example could not the energy of an excited state depend on the number of
emitted photons?

In our study, the parameterµ cannot reach the physical value 1, far from it. However,
the question is raised: how does our result extend, whenµ increases to 1 andλ is small?

Appendix. The spectrum ofH(λ, 0, g)

Proposition. The spectrum of the HamiltonianH(λ, 0, g) consists of the real numbers of
the forms+(1+ d(λ))− s−d(λ), wheres+ ands− are non-negative integers.

Proof. With ω ∈]0, π/2] such that tan 2ω = 2λ, the transformation

β+ = cosωa ⊗ 1+ sinω1⊗ c(g)
β− = − sinωa ⊗ 1+ cosω1⊗ c(g)
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leads to the following form for the Hamiltonian:

H(λ, 0, g) = (1+ d(λ))β∗+β+ − d(λ)β∗−β−.
Theβs satisfy

[β+, β∗+] = [β−, β∗−] = 1 [β−, β+] = 0

andH(λ, 0, g) is thus the difference between the Hamiltonians of two uncoupled harmonic
oscillators; their energies are respectively 1+ d(λ) andd(λ). �
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