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Abstract. We study a Hamiltonian coupling a harmonic oscillator to massless scalar bosons
which may have arbitrary energy. For certain values of the parameters that this Hamiltonian
contains, we prove that the poles of its resolvant matrix elements are not in one-to-one
correspondence with the eigenstates of the isolated oscillator. This result raises the question
of the validity of this correspondence, even for small coupling, in atom-radiation interaction.

1. Introduction

In this study, we give information on the analytic structure of the resolvant of the operator
HM, p,g)=a"a®1+1® uHad+Ma" ®c(g) +a®c*(g) 1)

when i €]0, 1] and i is real and small. The Hamiltonian (1) acts in the tensor product of
Hose, the space of states of a harmonic oscillator, Withg, the space of states of a zero-
mass boson fieldg is a function such thatg(p) measures the strength of the coupling

of the oscillator to the photon with momentum A particular assumption og will be
necessary, since this function will have to be continued analytically and we do not want it
to change too much with this continuation. This assumption is given in the statement of
proposition 3.1 and discussed before the proof. The shape of the graphaifich must

not be confused with the shape of the emission profile, will thus be supposed to be smooth.

This problem may appear as a rather academic question, due to the unphysical values
of the parameters, and to the crude form of the Hamiltonian. However, since the model
incorporates the photon field in a simple way, results in(ihe= 1)-case should be easier
to obtain than with the atom—radiation Hamiltonian and they could give information about
the analytic structure of the resolvant in this latter problem. We think that our results might
help in treating that physical = 1 case.

The atom-radiation problem has of course been explored for a long time and, recently,
important new results have been obtained [1-3]. In these papers, it is proved in a
nonperturbative way that to an eigenvalue of the atomic Hamiltonian may be associated
a complex value, a resonance, and that, in the neighbourhood of that eigenvalue, outside a
cuspidal domain pointed at the resonance, analyticity properties of resolvant matrix elements
are guaranteed. The study does not say anything about the analytic structure outside the
neighbourhood or inside the cuspidal domain.

Here, in our model, we shall prove something that may appear surprising: one excited
state of the oscillator gives rise to more than one pole of the resolvant matrix elements.

1 E-mail address: billionnet@pth.polytechnique.fr
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Figure 1.

The mechanism behind this result may be stated in the following way. As is the case
in the atom-radiation problem, states of the system may contain any number of photons
and the energy spectrum of the photon isd€]. These two facts have the consequence
that energy states of the uncoupled oscillator—radiation system are infinitely degenerated
since these states may consist of 1, 2p@hotons. The interaction may then be expected
to separate the energies of such different states having the same unperturbed energy. In
particular, if the energy of the radiation part is small, so that the energy of the state is close
to an unperturbed energy of the oscillator (or of the atom), this would explain the presence
of several poles corresponding to one unique oscillator level. We do not pretend that these
different poles would remain close together whegr= 1. The result we obtain for small
is illustrated in figure 1; dotted curves are for thedependence of the two poles.

This mechanism could operate in an atom-radiation interaction and has some analogy
with AC Stark effect, the fact that the position of levels in an atom depends on the number of
photons in the populated modes of the electromagnetic field. Thel case in our model
would be a simple system on which such a mechanism could be tested, mathematically.

To our knowledge, there is little work on the precise question we are interested in. A
family of Hamiltonians to which (1) belongs has been thoroughly studied in [4]. Their
spectrum may be determined according to the values arfid «. However, Arai does not
treat the problem of the analytic structure of the resolvant matrix elements.

Compared with the atom—radiation Hamiltonidi(A, i, g) has an important property
in that it conservesq, the sum of the excitation number of the harmonic oscillator and the
boson number. This should make the £ 1)-model simpler than nonrelativistic quantum
electrodynamics (QED), while maintaining two important aspects of the physical problem
which make it hard to grasp mathematically: the presence of an infinite number of particles
and the fact that their mass is 0. From the purely mathematical point of view, it could also
be interesting to study how the spectrummti, 0, g) and that ofH (0, 1, g) combine in
the analytic structure of the resolvent Bf(), i, g).

Some partial information concerning poles of some matrix elements of the resolvant of
(1) can be obtained from the fact that, reduced to thg & 1)-states,H (%, u, g) is the
Friedrichs model. See, for instance, references on the subject in [5].

In a crude representation of atomic states, coupling of the atom with the quantum
electromagnetic field transforms the real energies of the atomic levels into complex
values, whose imaginary parts are the widths of the levels. In elementary textbooks, the
displacements of the energy levels are often calculated with rules valid only for perturbations
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of isolated nondegenerated eigenvalues. We are not considering this case, as the eigenvalues
lie inside the continuous spectrum, moreover at the edge of some parts of the continuum.
The result of [3] makes the existence of complex values attributed to resonances rigorous.

It is generally admitted, at least when the coupling is small, that an eigenvalue of the
unperturbed Hamiltonian does not give rise to an infinity of poles of the resolvent of the
full Hamiltonian. This is the image that we question here. We will see that new features
seem to appear when the number of bosons taken into account is greater than one. The
precise formulation will be stated in the conclusion.

A refined description of atomic states has to take the strength of the coupling into
account. It may modify the simple correspondence just mentioned between the real energies
of the uncoupled atom (or oscillator) and complex energies of the coupled system. For
instance, in [6], it can be seen in the Friedrichs model that when the coupling cohstant
increases, some peaks appear in the probability amplitude, that were not present for small
A. In [4], it is shown that the spectrum df (%, u, g) changes in nature whenbecomes
greater than a certain critical value. So perturbation of the simple image may come from
strong coupling effects although we believe that the perturbation which will appear in our
study is of a different kind.

Let us note that one of the hypotheses made in [4] excludes the possibijitybefng
too small. The HamiltoniarH is studied under that condition, which is alright for the
physical problem, if one looks only at the spectrummf However, if information on the
analytic structure of its resolvant is sought, then ¢he~ 0)-behaviour may be relevant.

It could be pertinent for they( = 1)-problem, even if is small. This is the motivation
behind this paper.

Another aspect has to be underlined. In the study of the resolvant in the complex plane,
analyticity properties of will have to be taken into account. This was already the case in
the Friedrichs model (see for example [7]).

Let us now present in a more mathematical way the reason why one might be reluctant
to accept the statement: ‘fgr = 1 and i small, there is a one-to-one correspondence
between the set of eigenvaluesadt: and a set of complex numbers which would describe
the excited states of the oscillator coupled to the bosons’. We will state here mathematical
facts which sustain the motivation we expressed before in more physical terms.

We shall take the unusual point of view of considering (1) as a perturbatiéf(of0, g)
by the unbounded operatoRiliu Hyoq. If 1 = 0, then the bosons have zero energy; therefore
each eigenvalue,@, 2, ... of a*a®1 is infinitely degenerated as any number of bosons may
be present, but the degeneracy is removed when the coupling\tern® c(g) +a ® ¢*(g))
is introduced.H (1, 0, g) is not lower bounded and its spectrum is given in the appendix; it
no longer looks like that ofi*a. An excited state of the isolated oscillator, eigenvector of
a*a in Hoese Qives rise, ifa is small, to an infinite number of eigenvectorsif, 0, g) in
Hose ® Hrag- One could then ask whether such energy-level splitting still occusis##f 0.

Our study is devoted to answering this questionifs small. The result is stated in the
proposition of section 5 and, it being understood that the eigenvalues are now changed into
poles of matrix elements of the resolvant, the answer is yes. It raises the question: is that
still true whenu = 1?

As we can see, it is a multiboson effect, which is why we do not believe it is a strong
coupling effect, although it seems to be the case whés small. However, in actual fact,
there is no obvious connection betweersmall andx fixed in [0, 1] andx = 1 andA large
in our problem.

Let us emphasize that this multiboson effect is already observed for the first excited
level of the oscillator, although our Hamiltonian couples this level to 1-boson states only.
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Indeed, taking the degeneracy of eigenvalue one into account entails considering more than
one boson in the final state, because the state that we will shortly dendte hyy(the
oscillator is in the first excited state and one boson is present) can evolviijro(the
oscillator in the fundamental and two bosons present).

Many studies (for instance [8, 9]) on mathematically tractable models for atom—radiation
interaction use 1-boson states only. This is made possible in two alternative ways. In the
first one, Friedrichs model, (see [9] or [6, complemént,]), the state-space of the system
is not a tensor product clearly separating the matter and the radiation. One of the states in
the Hilbert space of the system is viewed physically as the matter's excited state without
any boson, but mathematically it is not the tensor product of a matter’'s state with the
vacuume,q in someH;qq. It can evolve into a family of states indexed in a continuum,
and these states are viewed as describing the oscillator (or the atom) in the fundamental,
accompanied by one boson. However, these states are not a tensor product either. The
Hilbert space does not contain any 2-boson states. In the second way, for instance in [9],
the model does separate the matter and the radiation. In the state-space of the system,
certain states are actually a tensor product of the excited state of the matter with 1-boson
states, thus, seemingly, there should be 2-boson states, but the transition into a 2-boson state
is forbidden by the Hamiltonian which is chosen deliberately so as to avoid considering an
infinite number of bosons. In the problem we are treating here, 2-boson states play an
essential role. This was also the case in an earlier study [10].

Clearly our Hamiltonian is defined on a space which contains an arbitrary number of
bosons, and that feature usually makes the mathematical analysis difficult. The important
point that will allow us to bypass that difficulty is the following. The fact ti&A, 0, g)
has more than one eigenvalue in the neighbourhood of 1) femall, can be seen by
only considering restrictions aff (1, 0, g) to two subspaces where the number of bosons
is two at most. These subspaces are invariantgy, u, g). They are the eigenspaces
associated with eigenvalues 1 and 2 of the operdigr = a*a ® 1 + number(bosons);
they will be denoted byt; and E,. So, turning now toH (A, i, g), as regards the poles
of its resolvant matrix elements, corresponding to the preceding eigenvalues, we will still
consider the restrictions of the operators to these subspaces, and, therefore, need not take
an unbounded number of bosons into account.

Our problem contains another difficulty, which is underlined in [1]. It comes from the
fact that the eigenvalues &f (0, i, g) are not only embedded in the continuous spectrum,
but are points of the boundary of parts of that continuum.

2. Notations and setting up

2.1. Notations

Let o™ be inZ?(R) ande® in 12, (R?). We setli) = (i) Y2(a*) Qosc® Qradli: 9P) =
N Y2(a*) Qose @ P and |i; @) = (1) Y2(a*) Qosc ® 9@. Q denotes the vacuum
state.

E, is the subspace spanned by vectors of the fdnor |0; o) with ¢ € 2.2(R). Es
is the subspace spanned by vectors of the f@m|1; @) or |0; ¢@), ¢ e L2(R), ¢ €
L5m(R?).

Let D, be the space of-variable, symmetric, square integrable functig@f8 such that,
fori=1...n, p— |pile®™(pi, ..., py) isin L2R").

The domainD; of H [g, is the space spanned by vectors of the fafinand |0; ¢1)
with ¢ € D;. The domainD, of H [, is the space spanned by vectors of the f¢2n
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|1 ¢®) and|0; ¢@), 9@ € Dy, @ € Dy.
H(A, 1, g) [g i1s self-adjoint onD; fori =1, 2.
We set, for3z > 0,

G, iz, 8) = (illz — HOv, w, ©17Yi) = (illz — HO 11, 8) Tr,]171i). )

It is customary to introduce operatoRs, called level-shift operators; they are defined, for
Sz > 0, by

Ri(h, 1,2, 8) = AV(Q) 5, +27V(9) Qilz — Qi(Ho() + AV (2)) [, Qi1 *QiV () Ik, (3)
where

Vigd=a"®c(e)+a®c’(g)  and  Ho(uw) =a’a®1+1® pHg
(thereforeH (1, 11, g) = Ho(i) + AV (g)) and

Qi =@A—10)(D T -
Setting

Rii(h, .z, 8) = (i|Ri (A, . 2, ®)i) 4
we obtain (see [6])

GiGp,z,8) =z —i—Rii(h e, 2, 1 (5)

We setd(1) = 3(v/1+ 422 — 1). One hasi(») < A2 if A # 0 andd (%) ~ A2, for small ).
d measures the oscillator’s level splitting we mentioned in the introduction.
We also setf; (A, n,z,8) =z —i —Ri;(A, 1,2, 8).

2.2. Setting up

Nearz = 1, whenx € [0, 1] and i is small, our aim is to derive thaf,(A, u, z, g) has

a pole distinct from that of51(%, u, z, g) from the fact thatH (i, 0, g) has two distinct
eigenvalues in that region. Our tool will be Hurwitz’ theorem (see [12]). Let us state it in
the following form.

Let f(u, z) be a function which, for all such that0 < u < o, is analytic in a disk
D(zo, R), with centrezg and radiusk, not depending op. Let us suppose that — f(u, z)
is continuous ab, uniformly forz € D(zg, R), and thatz — (0, z) does not vanish iD
except atzo, this zero being simple. Then there exists a functipaefined in]O, R[ and
taking its values ifR™*, such that: Ve such that0 < ¢ < R, Yu € [0, n(¢)[, the function
z = f(u,z) has a unique zero which is simple in the diBkzo, €). Let us denote it by
z(u); moreover, the functiom — z(w) is right-continuous aj = 0.

Poles ofG; (%, u, z, g) are zeros off; (x, u, z, g); they are known for = O (see the
appendix). Thus the functiorf(u, z) in the theorem will be successivelf (X, i, z, g)
and f>(A, i, z, g). We will thus study the analyticity of these two functions (sections 3.1
and 4.1) and their continuity at = 0 (sections 3.2 and 4.2), in order to get the poles of
Go(A, i, z, g) (section 3.3) andr1 (A, u, z, g) (section 4.3).

3. Analyticity properties of Go(\, u, z,g) nearz=1andpu =0

Throughout this sectionH, (A, u, g) will denote the restriction of the operator (1) k.
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3.1. Analyticity ofR,2(A, 1, z, g) with respect t
The entire section is devoted to proving the following.

Proposition 3.1.Let A be fixed in ]0,1] andg real valued on }- oo, +o¢[ such that:

(1a) for somegy €]0, /4], p — g(p) has analytic continuationg™ in {p; p #
0, —¢o < argp < ¢o} andg™ in {p; p # 0,7 — ¢ < Argp < 7 + ¢o},

(Ab)Vf € L?(R), [ g(e?p)f(p)dp and [[g(e ¥ p)]?dp exist and are analytic with
respect ta for |I0| < ¢o,

(1) 3M, > 0 such thatve, —go < ¢ < ¢o : (f ' p?lg(€*p)HY2 < M,

(2) YOISO| < o, n0(g) = 271/2([;,? lg(e™™p)2dp — D2 < Cx where C <
4 x 1075 singy.

Then there exists a neighbourhody of z = 1 and u1(A) €]0, 1] such that for all
u € [0, ua(M)], z = Ro2(A, 1, z, g) can be analytically continued in al;.

Before entering into the proof, let us make some comments, firstly on hypothesis 2,
then on the method used.

Hypothesis 2 will be useful because analyticity properties of the resolvent matrix
elements will be obtained by analytic continuation gf the coupling function. We do
not want the coupling.g to change too drastically with that analytic continuation. Thus,
since it is of the ordek, we will ask the variation to be at most of a smaller order, i%.
this is what hypothesis 2 says. Thus the order of the coupling is not changed. g\iken
analytically continued in the sector, if$ norm along the lines from the origin is supposed
to vary slowly with the angle that the line forms with the real axis, but since the bound on
the variation depends an the class of admissiblg functions depends oh. Sincei may
be chosen arbitrarily smalg may be forced to vary very slowly, in the,-norm sense, in
the sectorial neighbourhood of the real axis, and we have to make sure that such classes
of g are not void. Here is an example of a function which has the desired property in a
sectorial neighbourhood of the positive axig;(z) = 2/2(n!)~%2e="". It can be shown
that, for largen, with the L2 norm on [Q oo], (|lg.(€7¢.)]|> — 1)¥/? equals @¢pn~/?) and
thus this quantity can be made smaller tiian The upper bound given afi is a crude one
which could be improved. It has been calculated witarbitrary in [Q 1] and it depends
on the size ofY, which is chosen.

Concerning the method of the proof, we are going to use a complex dilatioase
is often the case in embedded eigenvalue perturbation problems. We have already said
that our problem is of such a kind, since we could treat* ® c(g) + a ® c*(g)) as a
perturbation ofH (0, i, g) = a*a ® 1+ 1® uHag, although we are not going to proceed in
that way. With that point of view, the unperturbed eigenvalue 1 is at the edge of one part of
the continuous spectrum, namely the part corresponding heuristically to eigenvectors of the
form |1, p), sincep may be arbitrarily small. However, because of that particular location
of the eigenvalue, rotating the spectrumgfy by changingp into € p, and thusH,,q into
e % H,ag, Will not push the eigenvalue out of the continuous part of the spectrum of the
dilated unperturbed Hamiltonian. The dilation will be useful in another way. Considering
the functionsp — g(ef p) will reveal a simple means of taking advantage of the analyticity
properties ofg. In the simple case oRy 1(%, u, z), which is presented in section 4, a well
known method of proving analyticity properties 6f1(x, i, z) is to perform a contour
deformation in an integral, and a way of doing it which can still be usedGfg@., u, z)
(whose expression is more complex) is to introduce the above funcgticasg (e p).

Let us mention that this dilation, or analytic continuation, would not be necessary if
g had a compact support. Indeed, restricting the operators to subspadgsanfd E,
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consisting of compactly supported functions would makgy bounded, which very much
simplifies the demonstration. Theorem XII.11 of [5] may then be invoked. Calculations in
that case are given in [11]. In this work, we let the energies of the bosons take any value.

The line of proof is as follows. As can be seen from (4) and (3), we are concerned with
the existence ang-analyticity properties of the operator

L .2, 8) = [z — Q2Ha(h, 11, 8) Q2] (6)
leading to analyticity properties of its matrix element
Roo(h, 11, 2, 8) = 22%(L; gllz — QaHa(h, 1, 8) Q2] L 8). (7)

We will use the analyticity ofg™ and g~ in hypothesis 1 by introducing &-variable
varying in B = {0;|30] < ¢o} and considering that, ot and R™, g(p) is the
value foro = 0 of e%?g+(ep) and e9?g= (e ?p), respectively. We will define
Hop(A, 0, 8), L(A,,z,0,g) and Ro2(A, 1, z,0, g), which coincide respectively with
Ho(A, 14y 8), LA, 1, z,8) and Ra2(h, 1, z, g) wheno = 0, and are analytic with respect
to 6, for 6 € B, andz in certain domains.L(x, u, z, 60, g) (and thusRz2(%, i, z, 6, g),
will first be defined for6 € B andz in a certain domaim included in thedz > 0 half-
plane (section 3.1.2.1), then, after nailing do#rin B, will be extended to the region
Sz > 2%20n,(g) (section 3.1.2.2), and, finally, to a neighbourhood ef 1 (section 3.1.3).
The important point is that, far € A, R22(%, i, z, 6, g) is constant with respect & so it
is in fact Ry 2(%, u, z, g) which has been continued through the real axis pearl, in our
procedure. This is the desired result. This continuation through the real axis will be made
possible by the fact that the antiself-adjoint part thag) acquires wherg is analytically
continued can be controlled (see equation (28)). This is the purpose of hypothesis 2.
Let us now come to the proof in detail.

Proof. The dilation operates in the boson momentum space and its ratfg & is real

for the moment but will soon be made complex. The unitary transformation induced in
H,aq by this dilation is denoted by, and we setd, = 1® A,. On the 1-boson space,
Ag(FDY(p) = e 2 FD(e?p). For reald, we set

Hag(h, ity 8) 1= AgH(h, 11, ) At | En ®)
defined onD; since D is invariant byAg. As AgH,adAgl = e % H,,q, one has
Hog(h, 1, 8) = (@*a® 1+ e 1 ® Hag+ AV (g0)) | Ez 9

where gy, = Agg and relationsAgc(g)A;* = c(gs) and Agc*(g)A,* = c*(gs) have been
used. The unitarity ofi, yields, for3z > 0,

Roo(h, i, z,8) = Rao(A, 1, 2,0, 8) (10)
where
Roo(A, 1, 2,6, 8) 1= 22%(1; gyllz — Q2Hz 9 (A, i, 8) Q2] *I1; go) (10a)

a function which therefore does not dependdorif 6 is in R.
We set

LA, 1, 2,0,8) :=[z — Q2Hou(h, 1, g)02]7L. (11)

We are now going to make complex.
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3.1.1. Analytic continuation df/»» for 6 € B. Since we keep the Hilbert space unchanged,
i.e. still E;, Ay does not make sense anymorglifis complex; yetH, 4, defined by (9)
for 6 real, may be analytically continued with respect to theariable throughout the
strip —¢p < J0 < ¢o. With go(p) = e—%g(e‘ep), defined thanks to hypothesis 1 of
proposition 3.1, this continuation is given by the following formula:

Hyg(Oho b, 8) = (@*a ® 1+ €1 ® Hyag+ A(a*c(gg) + ac*(gp))) | Ea. (12)

As Hy (%, i, g) is unbounded, analyticity here is to be taken in the sense of Kato [13,
section VII.2]. Hyy(A, 1, g) is defined onD, if © # 0 and onE, if u = 0. Neither

H (A, 4, g) NOr evenHy»(A, O, g) are self-adjoint whem is complex. Let us denote by

V5 the restriction ofV to E,, and set

Vau(g) = (a*c(gs) +ac* () | Ez (13a)
g =2 +g) g =) g — %) (130)
Vidg) = Valgy)  Vig) = Valg)). (1%0)

V5 (g) and V') (g) are self-adjoint and/z4(g) = V57 (g) +1V,5(g); SO
Hop(h, 11, 8) = (@ a® 1+ pe"1® Had) | E2+ (V4 (8) +iV,5 (). (14)

Va4(g) is bounded |(V2(g)|l < 2%?|gsll) and Va4 (g) is bounded-holomorphic if for
0 € B. Therefore,H,4 (X, i, g) is holomorphic foré € B (see [13, VII.2, probIAem 1.2)).
Thanks to hypothesis 2, the antiself-adjoint partVgf (g) can be controlled:||V2ff9) @l <

2%24(g) < 2%/2Cx, becausd|g) || = n4(g). (The equality(gs, gs) = 1 has been used,;
this results from the analyticity ofgy, gg), which has been assumed, and the fact that it
has the value 1 for redl. Also note thatigy|> > 1).

3.1.2. Expression aRz (A, i1, 2, g), for Iz > 23/2xn,(g), using thed variable.

3.1.2.1. Expression aRz»(, i, z,g) in A C {z; 3z > 2%2xny(g)}. Let us first remark

that the important result in this section is not tlist,(A, 1, z, g) is proved to be analytic

for 3z > 2%%xn4(g), since it is known from the beginning to be analyticdp > 0. The

point is thatR, 2 (A, 1, z, g) will be written as an expression (see (15), with{L@nd (14))

which can be continued across the real axis, whereas that possibility was not obvious on
the original one (4) (with (3)), and that the equality (15) is provedYor> 23211 (g).

Let us determine a regiom\ in the z-plane such thatvz € A and V6 e B,
formula (11), with H,» now given by (14), defines an operator that we still denote by
L(h, u,2,0,8). If 3z&’) >0, A =z — ue?(1® Hag) Q> has a bounded inverse and
besidesB := Q2H, (1, 0, g) Q- is bounded; it then suffices that ~1 B|| should be smaller
than 1 for the sumA + B to be invertible. SincglA™Y| < |€]|3(z€”)|71, the relation
|A~B|| < 1 will be fulfilled as soon as€’||3(z€’)| 7| H20(2, 0, g)|| < 1. Now, as a
consequence of the hypotheses grthere existsz, independent of., such thatvé such
that |J60| < ¢o, |H20(X, 0, g)|| < a, if A < 1. Let us set

a + 2singg
COS¢o '

It can be verified thav¥z € A,V0 € B, 3(z€’) > 0 anda|€’||3(z€’)|~* < 1. Thus, for
z € A, (11) defines a-analytic family of bounded operatord,(, u, z, 0, g), when o
varies inj.

A:{z;0<9tz<2;*3z>
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As a consequence, the functi®a»(x, u, z, ., g), originally defined by (18) for 3z > 0
andé real, can be analytically continued throughdijtfor everyz fixed in A.

Still for z € A, Ro2(A, 1, 2,0, g) is actually constant foé real in B; so it is constant
in all 5 and

Rao(h, 1,2, 8) = Ra2(h, 11, 2,0, 8) Vz e A Vo € B. (15)

From now on,§y being any fixed point i3 satisfying36y = ¢o, we will put 6 = 6,.
Let us show that.(x, i, z, 6o, g) existsVz, Sz > 2%2xny, (g).

3.1.2.2. Expression aRz2(A, i1, Z, g) in the whole half-plan&z > 2%2in,,(¢). Thanks
to the positivity of Hraq, the bound for| V') || given in section 3.1.1 yields

{(u| Q2Ha g, (A, 11, §) Q2lu); u € D(Hayg,), llull = 1} C {z; Iz < 2%%An4,(9)}-

Then theorem V.3.2 of [13] tells us that ¥z > 2%2Ang(g).[z — Q2H24,(A, 1, g) Q2]
is invertible since it is invertible foz € A. Its inverse is analytic with respect to
for 3z > 2%2xn,,(¢) and it defines an analytic continuation of — L(A, u, z, 6o, 8)-
Thus, by (15) and (14, it provides an analytic continuation of - Rz2(X, u, z, g) for
Sz > 2%20m4,(8).

We are now going to continue the r.h.s. of (15) across thezeadis.

3.1.3. Continuation ofRy2(A, i, ..., g) into a neighbourhood of 1. First, let us sketch
how this can be done, after setting, toe= x +iy:

Usy(r, 2, 8) 1= €°(z — Qa(a*a + AV, (8)) Q2) (16)
Wy (e, 11, v, 8) i= €0(ue™® 02(1® Hrad) +1102V5 0 (8) Q2 —1y)  (17)

so that

2 — Q2Ha oA, i1, §) 02 = —€ ®(Ug, (A, x, g) — Wa (A, 11, , 8))- (18)

(If w # 0, Wy, is unbounded, and its domain By; it is E, if © =0.)
We want an inversé.’ (A, u, z, 6o, g) for z — Q2H24,(%, 1, g) Q2, the L.h.s. of (18). If
Uq, (A, x, g) is invertible, its inverse being denoted By, (%, z, g), then, formally,

L'(A, 1, 2,60, 8) = €°[e™ — Ty, (A, x, &) Wao (s 11, ¥, ©)] 2Ty (A, X, 8) (19)

and to prove the existence bf, (A, i, z, g), it is sufficient to show that the imaginary part of
Ty (M, x, ) Wao (A, 11, ¥, g) is smaller than that offe The crucial point will be formula (29)
which shows that the imaginary part is a bounded operator (whereas the real part is not).
That the bound is small enough appears in formula (28) as a consequence of hypothesis 2.
Then, once we have defindd(r, u, z, 6, g) for z in V1, a neighbourhood of 1, we will
check (section 3.1.3.3) that it is an analytic continuation of L(A, u, z, 6o, g), previously
defined in3z > 23214, (g). Thus we will get an analytic continuation & (A, i, -, 8),
near 1, across the real axis.

The following section is devoted to proving thdfy, (A, x, g) is invertible in a
neighbourhood ofx = 1, and to obtaining a bound for the norm of its inverse
(formula (23)).
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3.1.3.1. Definition and study @, (, z, g). Letus sey(x,z, g ) = z(z —1)—222||g |12
and g1 (A, z, gég)) =z(z-1 — )»legé;)llz. It can be verified that the following formulae
define the inverse o/, (%, x, g) wherever the functiong 1, ql‘l andz~! are defined:

Too(hy 2, 9)12) = 2712) (20a)
T. (A 1: — -1 A (r) 1: «/é)» 0: (r)
Ho( 7Zag)| 7(/)) qj_ ( ’Z’g90 )(Z| ’(p>+ | 7g(90 V‘P)

2200, 00710, 2, gz 1L g)) + V2010; 8 v gD (20b)

T2, 910 0 v 1) = 205 9 v ) + }zflql‘la, 2, 80)
X (2115 (8, @)W + (g5 W) + V2110, g v (8, )W + (L), ¥)9)
+222(g), ) (g Vg (k. 2, gy (1L 88 ) + V2410; g v g ).
(20c)
In these formulae, our convention 5v g =2"%(f ®g+ g f).
We set xi(h,gy) = 21 £ /1+82gy |2 and x11(r, gy) = 21+

r

J1+4:2]g3112); they are the zeros af(4, x, g)) andqi(h, x, g) respectively. Thus
Ty (A, z, g) is defined forz # 0, x4, x14. Let Vi, be the disk with centre 1 and radius
A2/2. V1, does not contain these points siritgg)n = 1+ 19,(2)%Y?% > 1. Ugy(h, x, g)
is thus defined iVy ;.

An alternative expression fdfy, (1, z, g) will be useful: in L(E»), for Iz > 0O, let us
setGo(z) = (z — Q2(a*a ® 1))~ and

V) 1= Go(2) Q2(a ® c(gy)*) 02Go(2) Q2(a™ ® c(gf)) Q2
Vy = Go(2) Q2(a” ® c(gf,)) 02Go(z) Q2(a ® c(gy)*) Q.
Then, forJz > 0, one may writely, (A, z, g) in the form
Tgo(h. 2. 8) = —Go(2) + [1 — A2V; 171+ AGo(2) Q2(a ® c(g4)*) Q2) Go(2)
+[1 = 22V5 7M1+ AGo(2) Q2(a” ® c(gy) Q2) Go(z). (21)

This formula may then be used to tufi, (%, z, g) into the following operatorial form
which, as formulae (20), does not have a pole at 1, unlike Go(z):

Too(ho 2, 8) = 41 M(Q2(a* ® c(gy))) + (a ® c(g5)*) 02)
+(zq) "2 Q2(1— a*a) ® c(gy) c(gy)) + q1 2 Qa(a*a ® 1)
21— a*a)? © 1+ (gq) 2(zIL; g (L g
V2011 805 g5 v gl | + V20108 v g (L: g |
+2:71210; g v g6 ) (05 g8 v g ). (22)

(22) may also be verified directly from (20); we recall that the operators are restricted to
E>.
In order to show thafy, (1. z, g) € B(E2), let us use (22). Fromig;’|| > 1, it follows
that for 0< A < 1 and|z — 1] < 22/2, one hadz7 Y| < 2, |¢1(A, z, gég))| > I5T*2A2 and
lg(r, z, gy)| > A2/4. As a consequence, there existssuch that

T3 (A 2, @) < C1A72lIgy) I = C1a2(L + 1, ()P (23a)
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One can verify that this equality is true witty = 300. Since, by hypothesigy, (g) < C,
we obtain

T (A, 2, @)1l < C1(1+ CHZ172 Vz € Vi (230)

Thus 7y, is bounded-analytic fog in Vy ;.

3.1.3.2. Existence de% — Ty (A, x, g)We, (A, 1, y, 8)]"1. We decomposéW, into its
self-adjoint and antiself-adjoint parts:

Wop = Wy +iW,

Wy = 1 Q2(1® Hrad) — A3(€°) 2V Q2 + y3(€7)

Wy = AR() 02Vy 02 — yR(E).
As Ty, (A, x, g), defined for|x — 1| < A2/2, is self-adjoint onE,, then, in the decomposition

Too (A, x, ) Woo (M, i, ¥, 8) = Agg(A, X, ¥, 8) +1Cq (A, i, X, y, 8) (24a)

where Ag (A, i, x, y, g) and Cy, (A, u, x, y, g) are self-adjoint, the antiself-adjoint part of
Too (A, x, 8)Weo (X, i1, y, 8) IS

Cop(h. . x.y, 8) = (20) [To, (. x. 8). Wy (0, 11, ¥, 8)]
+27 Ty (A, x, 8), Wi (0, y, )]+ (24b)

where [], is the anti-commutator.
Let us show that there existg (A, i, y, 6o) > 0 such that

Vxlx — 1] < 2%/2 1Coo (A, ey x, ¥, @)l < bg(R, 1, y, bo). (25)

By theorem 1V.3.17 and formula V.(3.16) of [13], this will imply that the spectrum
o (Tyy (X, x, ) Wa, (A, i, y, 8)) Of Ty (A, x, g)Wy, (X, i, y, g)) is contained in the strip of
width b, centred along the real axis, for such valueg of

Let us use (20). gy " a (g, ligs I tac(ge)*, s, I-2c(gy) ) e(gy),
lgse 17213 86)) (Ls 861, llgey 17312: 2671405 g4t v gfr'1, and finally [igiy) I 410; gy v
g;;)xo; gég) v g§2)|, as operators acting fronD, into D,, have a commutator with
1 ® Hyag Which can be extended to alf,; these extensions are bounded in norm by
Cyllgs, I Hraagyy Il, where Cy is a number. It follows that there exists € R* such

that [Ty, (A, x, g), 1 ® Hrad is bounded byCx~2llg 13 - || Hraagyy |l uniformly for z such

that |x — 1| < A2/2. Now, sinceTy,(,x, g) is uniformly bounded for these values

of x and v, is bounded, thenTh,(r, x, g), Wy (x, 1, y, 8)] is bounded, as well as

[T3,(A. x, 8), Wa (A, i, . ©)]4; this proves thaiCy, (4, x, y, g) is bounded. To be more
accurate, ifix — 1] < A%/2,

1 Ta, (A x, 8. Wil (0, e, v, @I < 1 =2Callggy I1® - || Hraagsy, |

250300, () 1 Tip (1. x, g (26a)
[ Too (ks x. 80 WP G, 1t v, @141l < 225200 (8) + [y DIRED) | Ty (1, . glI. (26b)
This yields (25) with

be(h, i, v, 60) = 272 CoA 21l gl %1l Hraagly, Il + €% (25201165 (8) + 1Y DI Ty, - (27)
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Now (25) and (27), together with the control on the antiself-adjoint pary ¢f),
will enable us to get an upper bound fég(x, i, y, 6p), and thus to determing,, a
neighbourhood of = 1, andu1(1) > 0 such that

vz eV, Yu € [0, ni(h)] e ¢ o (To, (A, x, &) Woy (h, 11, Y, 8)).

Indeed, the condition o' in hypothesis 2 of proposition 3.1 implies that, with = 300,
252C(1+ C?)%Cy < ¢singo (rememberdfy = ¢o). Then (23), which is satisfied with
that value ofC;, implies thatvx such thatix — 1| < 12/2,

25204, () 1 5 (1, x, @) || < $I(EP). (28)
Then from (27) and|g(§’>||2 < 1+ C?, it can be concluded that, if
Vi = {25 1%z — 1] < 24%/2; [3z] < Esingo[C1(1+ €32 1A%

and
() == (3C) 1L+ C?)3A2 - || Hragg! | 713(€")
then
VzeV, Vi € [0, pa(3)] 1Coy (s g, %, 3, @I < b, .y, 60) < 33(€°)

(29)

and thus & — Ty (&, x, g)We, (A, i, v, g) is invertible. As we said, this inverse is denoted
by Ly, (x, i, z, g) and it remains to compare it withg, (1, , z, g)-

3.1.3.3.Lé0(k, i, z, g) is an analytic continuation of4 (A, i, z, g). It can be seen with
formulae (11), (14), and (16)—(18) that(x, u, z, 6o, g) defined by (19) and.(A, ., z, 6o, g)
defined by (11) coincide at pointswhere they are both defined. From,(g) < CA and
section 3.1.2L(x, u, z, 6o, g) exists fordz > 2%2CA2. As this domain has a non-empty
intersection withy, L'(A, u, ., 6, g), Which is analytic in), is an analytic continuation
of L(x, u, ., 00, g). Thus proposition 3.1 is proved. O

Of course, the analyticity of>(A, u, ..., g) results from that olR, (1, u, ..., g). We
will deduce the zeros of — f>(X, i, z, g) near 1 and for smallt from the knowledge of
the zeros of; — f»(%, 0, z, g) near 1, if we show the continuity property with respect to
w, uniformly with respect tq.

3.2. Continuity ofRp 2(A, u,z,g) atu =0

Proposition 3.2.Using the same hypotheses as in proposition Rza(A, ., z, g) is right-
continuous at 0, uniformly fot in V.

Proof. One has
(2IR(. 11,2, 8) — R(:, 0,2, 8)|2) = () (1, g |L(A. 11, 2. 6o, 8)
x(1® Hrad) Q2L (1., 0, 2. 60, 9)|1. 83)
= (22w(1, g5 IL(h, 1, 2,00, 8) Q2L (%, 0,2, 60, §)(1 ® Hrad) |1, g5)
F@20)(L, g0 1L O, 1, 2, 60, (L ® Hrad), Q2L (4, 0, 2, 6o, 9111, 2.
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By using the relations: (L ® Hag), (1 —X)™1 = 1 - X) (1 ® Had), X](1 — X)~* and
[(1® Hrad), V2,6,(8)] < Coll Hradgs, || for someCo, one obtains, for som€; € R*
”[1 ® Hl'adv QZL()\'v 07 2, 907 g)] ” < Cé)\”[HradgGo” ”L()\'v 07 2, 907 g)||2
From theorem V.3.2 of [13],
|e”|
dist(e"O, O’(Tgo Wgo))

consequently| L (A, i, z, 00, &)l < 2C1(1+ C?2r~2(singo) L. It then follows that there
exists a numbe€; such thatvz € V,, Vu € [0, 1 (A)]

[(2IR(L, 1, 2) — R(%, 0.2)12)| < Capuh™>|| Hraags, |
which proves the uniform continuity. O

IL, .z, 60, O <

7o, (2, x, g) I

3.3. The pole otG2(A, i, ..., g) near 1 in the second sheet

This pole is the zero off2(A, i, ..., g). As we said, we are now in a position to apply
Hurwitz’ theorem.

Proposition 3.3.Let 1 €]0, 1] and g satisfy the hypotheses in proposition 3.1. There then
exists a neighbourhood/, of 1 with the following property. For every disk; with
centre 1 contained iV, there existsuz(A, Vi) > 0 such that, forw € [0, u2(r, V)] ,

z — fa(x, ., z, g) has exactly one zero in;.

Proof. A simple finite-dimension calculus yields
R22(%,0,z,8) = 22%z[z(z — 1) — 2471 for 3z > 0
and

fo(r, 0,2, 8) = q(2) 1z — D(z(z — 2) — 4.

In the diskVy; (centre 1, radius.?/2), 1 is the unique zero of>(x, 0, z, g). Therefore,
thanks to the analyticity off>(A, u, ., g) in V, and to the right-continuity off>(%, ., z, g)
at u = 0, uniform inV,, proposition 3.3 is a consequence of Hurwitz’' theorem. O

As zeros of f>(A, u, z, g) are poles of
Ga(h, 1,2, 8) = (2l[z — H, i1, 9)1742)

we have just shown that the above matrix element of the resolvaht(df i, g) exhibits
exactly one pole in every sufficiently small neighbourhood; 6 1, providedu is small
enough ang; satisfies the hypotheses of proposition 3.1. In the following section, we are
going to show thatG1 (A, u, z, g) also exhibits a pole, still in the second sheet, distinct from
the preceding one, and still close to Liifis small (andg adequately chosen).

4. Analyticity properties of G1(A, pu, z,g) near z =1+ d(A) and p =0

It can be seen thaB;(x,0,z, g) = z[z(z — 1) — A?]~L. In the disk with centre % d(1)
and radius; +d), G1(1, 0, z, g) has only one pole at = 1+ d(A).

As in section 3, let us now turn to thg-analyticity andu-continuity properties of
Ri1(A, .z, g) nearz =1+ d(x) andu = 0, in order to apply Hurwitz’ theorem.
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4.1. Analyticity ofR11(A, u, z, g) nearz =14+d()

For 3z > 0,

oo

Ria(h, 1,2, 8) = Azf g%(p)(z — ulph~tdp. (30)

—0oQ

Let us suppose again that is in L?(R) and admits analytic continuations as in
proposition 3.1. LedV, be the disk with centre 4 d (1) and radius- = (% +d (1)) singy,
with 0 < ¢1 < ¢o; it is contained in the analyticity domain gf As0¢ W,, R11(1,0,z, g)

is analytic inz € W,. Foru > 0 andz € W, the integrand in (30) is meromorphic with
respect top for |p| in u=*W,, with poles only atp = +u~'z. So, by means of a contour
deformation in thep-complex planeRy 1(A, i, ., g) can be analytically continued from the
region W, N {z; Iz > 0} across the real axis throughowut, .

4.2. Continuity ofRy 1(A, p,z,g) atu =0, nearz =1

Let us suppose that, [¢| < I¢ol, p — |pI"?g(;+ep) andp — |p|Y2g(—; —€ " p)
are in L(R™). Uniform continuity is obtained by transforming

)\2 00
Rii(A, p,2,8) — Ry 12, 0,2, 8) = M? / Iplg?(p)(z — nlp)~tdp
—00

into the integral on the patll’ shown in figure 2 below, whergy > ¢» > ¢1; we will
suppose that the integration at infinity does not give any contribution, for instance by
requiring limMg— oo (R SUR < | lg(£RE)) = 0. If pe C,z e W, andpu € [0, 1], then
|(z — ulp) 7t < €71, for ane > 0. This implies the continuity oRy1(A, ., z, g) atu =0,
uniformly for z in W.

Now Hurwitz’' theorem may be applied.

4.3. The pole in the neighbourhood of 1, in the second sheé; @f, u, z, g)

Proposition 4.3.Let ¢ be as in proposition 3.1 and satisfy:

(1) ¥¢. 19| < Igol, p — |pI¥%¢(; +€p) and p — [p|Y%g(—3 —e¢p) are in
L*(RY)

(2) Mg oo (R SUPy)<|po |§(EREN)]) = 0.

There then exists a neighbourhobd, of 1+ d(1) with the following property.

For every diskW; centred at 1 d(1) and contained iV, there existguz(x, W;)
such thatG1(x, u, ., g) has a unique pole iV, if u € [0, us(x, W;)].

Proof. Proposition 4.3 follows from the analyticity and continuity properties just proved,

due to the fact thay1(1, 0, z, g) has a unique zero in,. O
C
@, ( C
12 12
Q
< C

Figure 2.
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5. Main proposition

Let A be in]0, 1] andg satisfy the hypotheses of propositions 3.1 and 4.3. There then exists
wo(2) such that foru € [0, uo(2)], the matrix elements of the resolvant Bf(A, u, g) have
at least two distinct poles in the digk(1, 21?) with centre 1 and radiusi2.

Proof. In sections 3 and 4, neighbourhoots of 1 and W, of 1+ d(») have been
considered; let us choose them to be disjoint and containef)(ih 212). Then, for
wo(A) = min{ua(x, V5), na(r, W;)}, the two poles obtained in sections 3 and 4 respectively
are distinct. O

For A small, they are close to 1, sind&x) ~ A2

The result is illustrated in figure 1. Other poles have also been drawn, withtheir
dependence: they are those that would likely be obtained by also consideyidg, . . .,
eigenspaces associated with eigenvaluek 3. of the operatoiVig.

6. Conclusion

In the simplest Hamiltonian coupling an harmonic oscillator to massless scalar bosons,
we introduced an extra parametgr such that the ‘physical’ Hamiltonian is recovered
for u = 1. The coupling constant is taken in ]JQ1]. For u small enough, we found
two distinct poles near 1 in matrix elements of the resolvant, and they may reasonably be
associated with only one level of the harmonic oscillator, the first excited one. In essence,
the result may be stated in the following way. Let us consjd&r Hiaq + AV (g) as a
perturbation ofH (0,0, g) = a*a ® 1. The eigenvalues of the unperturbed Hamiltonian
H(O, 0, g) are infinitely degenerated and the perturbation splits this degeneracy. We have
already indicated that this point of view leads one to expect an infinity of poles for each
level. If the values of the parameters in the Hamiltonian were physical, andgismall, it
seems to us that this would be in discrepancy with the usual physical description of excited
states, which affects a complex number to each level (energy and width). However, it is not
strictly in contradiction with the fact proved in [2, 3] that there exists a particular complex
number attached to each atomic level. The results of [2, 3] do not exclude poles different
from the one the authors call the resonance. Moreover, the existence of such a number is
not strictly equivalent to the fact that an excited state could be represented by a complex
number. For example could not the energy of an excited state depend on the number of
emitted photons?

In our study, the parameter cannot reach the physical value 1, far from it. However,
the question is raised: how does our result extend, whéamcreases to 1 and is small?

Appendix. The spectrum of H(\, 0, g)

Proposition. The spectrum of the HamiltoniaH (1, O, g) consists of the real numbers of
the forms, (14 d(})) —s_d(%), wheres, ands_ are non-negative integers.

Proof. With w €]0, 7/2] such that tan@ = 24, the transformation
B4+ =coswa ® 1+ sinwl® c(g)
B- = —sinwa ® 1+ coswl® c(g)
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leads to the following form for the Hamiltonian:

H(,0,8) = Q+dW)BiB+ —dM)BZB-.
The Bs satisfy

B B1=[B.p1=1  [p.B]=0

and H (A, 0, g) is thus the difference between the Hamiltonians of two uncoupled harmonic
oscillators; their energies are respectively #(1) andd(1). O
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